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Abstract

Traditional imaging algorithms within the ultrasonic non-destructive testing 

community typically assume that the material being inspected is primarily 

homogeneous, with heterogeneities only at sub-wavelength scales. When the 

medium is of a more generally heterogeneous nature, this assumption can 

contribute to the poor detection, sizing and characterisation of defects. Prior 

knowledge of the varying wave speeds within the component would allow 

more accurate imaging of defects, leading to better decisions about how 

to treat the damaged component. This work endeavours to reconstruct the 

inhomogeneous wave speed maps of random media from simulated ultrasonic 

phased array data. This is achieved via application of the reversible-jump 

Markov chain Monte Carlo method: a sampling-based approach within 

a Bayesian framework. The inverted maps are used in conjunction with 

an imaging algorithm to correct for deviations in the wave speed, and the 

reconstructed flaw images are then used to quantitatively assess the success of 

this methodology. Using full matrix capture data arising from a finite element 

simulation of a phased array inspection of a heterogeneous component, a 

six-fold improvement in flaw location is achieved by taking into account the 

reconstructed wave speed map which exploits almost no a priori knowledge 
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of the material’s internal structure. Receiver operating characteristic curves 

are then calculated to demonstrate the enhanced probability of detection 

achieved when the material speed map is accounted for.

Keywords: inverse problems, Bayesian inversion, wave propagation, 

ultrasonics, non-destructive testing, imaging, tomography

(Some figures may appear in colour only in the online journal)

1. Introduction

The oil and gas, nuclear, power and aerospace industries are only a subset of the sectors 

dependent on the routine maintenance of safety-critical structures [1]. Failure to detect struc-

tural weaknesses in components integral to the work being carried out by these industries can 

be catastrophic. Ultrasonic non-destructive testing is a technique which involves the transmis-

sion of mechanical waves through the component under inspection [2]. As in medical ultra-

sound, these waves can be passed through the component and subsequently collected without 

disturbing the internal composition of the medium [3]. The resulting datasets can then be 

used to create images of internal component features. However, inspections can become chal-

lenging when the material exhibits an inhomogeneous response to the passing wave energy  

[4, 5]. Due to the spatial variation of material properties, ultrasonic wavepaths are distorted 

and their expected arrival times (on which current imaging algorithms are based) cannot be 

accurately modelled by straight rays travelling at a constant velocity. When commonly used 

imaging algorithms (which assume a constant wave speed throughout the inspection domain) 

are applied to these ultrasonic datasets, the resulting images typically display poorly char-

acterised and mislocated flaws [6, 7]. Ultrasonic wave propagation through inhomogeneous 

media has previously been studied using models [8–10] and simulations within finite element 

packages [5, 11] and it has been shown that some prior knowledge of how the material proper-

ties vary spatially can be used to correct for the deviation in wave speed and path, producing 

improved reconstructions or images of any internal defects [6, 7, 12].

Previous studies have extracted microstructural maps experimentally which allowed insight 

into the variation in structure and crystallography of materials and how this can effect wave 

propagation [6]. However, acquiring these maps usually requires a destructive aspect where 

cross sections  of the material are analysed via macrographs or interrogated by techniques 

which require sophisticated equipment (such as electron backscatter diffraction (EBSD) [6] 

or spatially resolved acoustic spectroscopy (SRAS) [13]). Each component under inspection 

will have some dependence on its manufacturing conditions so it is not prudent to project the 

map of one component onto another as they will vary from case to case. So, although these 

destructive measurements are important for understanding complex materials, the techniques 

used to gather them cannot practically be transferred to an in situ environment. Modelling 

the material map using a small number of parameters presents an attractive, non-destructive 

alternative. In the weld specific case, MINA (modelling of anisotropy based on notebook of 

arcwelding) uses information from the welding procedure such as the dimensions of the weld 

pool, number, inclination and order of weld passes, and the remelting rates [14]. This allows 

the consideration of the physical polycrystal growth and a reasonably accurate prediction of 

the wave’s passage throughout the weld can thus be made [15–17].

Tomographic inversion presents another practicable approach where the aim is to recover 

some information on an object’s internal properties from measurements taken on its surface 

[18]. Tomographic imaging is commonplace in diagnostic medicine and seismology, and 
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within the NDT community much effort has been expended on developing ultrasonic guided 

wave tomography to detect and locate corrosion in pipes [19–23].

Although guided wave tomography has proved successful, it is restricted to the examination 

of plate-like structures. For the inspection of the third dimension of an object (depth), we might 

consider bulk waves (shear waves could also be considered but will not be studied in this work). 

A tomographic approach has previously been taken in [7] to map the anisotropic distribution of 

grains within austenitic welds using a Markov chain Monte Carlo (MCMC) approach, where an 

initial estimate of the weld map is taken from a model [24] and the ultrasonic wave propagation 

through the weld is predicted using Dijkstra’s shortest path algorithm. A weld map is gener-

ated by taking the mean of the postconvergence ensemble of samples and this is then used in 

conjunction with the total focussing method (TFM) [25] to produce more accurate images of 

a flaw. In this paper, we focus on heterogeneous media in which the constituent materials are 

locally isotropic (as opposed to the locally anisotropic regions studied in [7]) and the revers-

ible jump Markov chain Monte Carlo (rj-MCMC) method [26], a sampling-based ensemble 

inference approach within a Bayesian framework, has been selected as the inversion scheme. 

This method has already been used successfully in seismology to map the spatially varying 

wave speed within the Earth’s crust [27–29] where the spatial domain was partitioned using a 

Voronoi tessellation [30]. This paper applies this methodology for the first time within an NDT 

setting, mapping the wave speed over a rectangular metal component where the sources and 

receivers are spaced at regular intervals (as they are in linear phased arrays [1]). We introduce 

the multistencils fast marching method (MSFM) [31] as the forward model, to obtain more pre-

cise realisations of the travel-time field through the heterogeneous structure than those obtained 

using the standard fast marching method. This forward model is successfully adapted to handle 

data arising from pulse-echo inspections (that is where a single array is used for both trans-

mission and reception of the waves simultaneously). Once we have inverted for the material 

map, it is used in conjunction with the TFM (an algorithm which we will refer to as TFM+) to 

correct for deviations in the expected arrival times of each wave caused by the heterogeneous 

nature of the material and the subsequent refraction of the wave, thus producing better focussed 

images of any embedded defects. The success of the method is analysed via the accuracy of the 

resulting flaw reconstructions and how they compare to those arising from application of the 

standard TFM with a constant wave speed assumption. Analysis of these images can of course 

be affected by the subjective choice of threshold at which the images are plotted. To address 

this element of subjectivity and ensure that the comparisons are made fairly, we present an 

objective methodology for producing receiver operating characteristic (ROC) curves [32] from 

each image, and demonstrate the enhanced probability of detection achieved when the material 

map is accounted for within the imaging algorithm.

2. Data and processing

The production of ultrasonic phased arrays, which are capable of simultaneously transmitting 

and receiving ultrasound signals, has surged in recent years [1]. These multi-element trans-

ducers allow for greater coverage (hence faster inspection times) and provide the possibility of 

performing inspections with ultrasonic beams of various angles and focal lengths, giving rise 

to a richer set of data. These dual-purpose arrays provide us with two primary experimental 

set-up options. The most common is the pulse-echo inspection, where a single phased array is 

employed to simultaneously transmit and receive signals. This set-up has the obvious advan-

tage of requiring only single-sided access to a component. An alternative set-up is the pitch-

catch arrangement, where two phased arrays are employed, one to transmit and one to receive, 

and are placed at two carefully considered locations on the component’s surface [33] so that 
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the receiving array can record the energy input to the system by the transmitting array. For the 

work presented in this paper, we begin by studying the case known as through-transmission, 

where two arrays are placed directly opposite each other, on either side of the component 

(see figure 1). This set up simplifies the extraction of the time of flight (ToF) between each 

pair of elements and thus reduces the amount of uncertainty present in the input data for our 

inversion algorithm. We then progress to examine the pulse-echo case which is more relevant 

to industrial applications. In both cases we have N transmitters and N receivers, giving rise to 

N2 A-scans (the time series data), which are stored in an N × N × T  matrix (where T is the 

number of time steps recorded by the receiving array), which in the NDT literature is termed 

the full matrix capture (FMC) [25].

2.1. The observed data

The FMC is a rich dataset which contains information on the wave path between every pair 

of transmit and receive array elements. However, for our current implementation of the algo-

rithm, we need only the first time of arrival of the wave between each transmitter and receiver. 

In datasets arising from simulated through-transmission inspections, this is easily extracted as 

it is measured as the first point in time at which the receiving element detects any signal (that 

is the first point when Atx,rx
(t) > ε, where A is our time domain signal transmitted at element 

tx and received at element rx, ε is some chosen threshold, and 0 � t � T  is the time period 

over which the signal is collected). For application to data arising from pulse-echo inspec-

tions, the corresponding ToF is the shortest time taken for the longitudinal wave to travel from 

the transmitting element to the receiving element, via the back wall of the component. In that 

case, scattering from facets of the microstructure can interfere with the detection of the first 

time of arrival and an element of uncertainty is thus introduced. However, cross correlation 

of the input signal with the received signal allows us to obtain sufficiently good estimates of 

the ToF in such cases [34]. Once the arrival times have been obtained, they are stored in a 

ToF matrix T0, where each element ttx,rr
 represents the time taken for the wave to travel from 

transmitting element tx to receiving element rx. In a homogeneous, isotropic medium, the time 

taken is dependent only on distance and so we obtain banded matrices as shown in figure 2(a). 

Figure 1. Ultrasonic phased array through-transmission experimental set-up.
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However, if the material properties vary throughout the component as they would in hetero-

geneous media, these bands are distorted and we obtain a matrix as displayed in figure 2(b).

3. Ultrasonic travel-time tomography

3.1. Material parametrisations using Voronoi diagrams

To minimise the degrees of freedom within our inverse problem, we reconstruct a lower 

resolution map of the material’s heterogeneous structure than that afforded by destructive, 

experimental measurements. To this end, we use Voronoi diagrams to randomly partition our 

domain into cells. These diagrams have already been used successfully as the basis for FE 

simulations of waves propagating through polycrystalline materials [35] and to parametrise 

tomographic imaging problems [36]. Given an arbitrary set of seeds S, the Voronoi diagram 

consists of a set of non-overlapping convex regions where any point within a cell is closer to 

the seed of that cell than any other seed. Note that although Voronoi diagrams can partition 

n-dimensional spaces, we are only interested in the two dimensional case (our linear array of 

sensors allow us to inspect a two dimensional slice of the material) and so a single seed si is 

given by two dimensional Cartesian co-ordinates. To parametrise a heterogeneous material, 

we introduce a third parameter to each cell: its locally isotropic wave speed vi. Note that 

we assume that the density throughout the component’s domain is constant and so this vari-

ance in wave speed causes a mismatch in mechanical impedence between neighbouring cells. 

Thus we have a material model m(S, V , M) (V = {vi : i = 1, .., M} is the set of assigned wave 

speeds) with 3M  +  1 unknowns (since M, the number of cells, is itself an unknown), and N2 

equations which describe the known time of arrival between every transmit/receive pair of 

elements.

3.2. The forward model

Now that the material’s geometry has been parametrised, we require an efficient forward 

model which outputs the ToF matrix Tm for any particular instance of the material model m. 

We assume that the first time of arrival represents the arrival time of the longitudinal wave 

(as transverse waves travel more slowly) and so mode conversion at cell interfaces is ignored 
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Figure 2. Time of flight (ToF) matrices for (a) a homogeneous, isotropic medium and 
(b) a heterogeneous medium with locally isotropic regions.
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in our forward model. In this paper, we compare two forward models. The first assumes that 

the wave travels in a straight line between the transmitter and receiver, neglecting the effects 

of refraction (in the pulse-echo case, we assume that the wave travels in a straight line from 

the transmitter to the midpoint between the transmitter and receiver on the back wall of the 

component, before reflecting and travelling in a straight line back to the receiver). Given a 

material model m, the distance a wave travels through each distinct region lying on this path 

is known and, when coupled with the known wave speeds in each region, gives rise to the ToF 

between the two points. Although this represents very little of the true physics, this forward 

model is fast and surprisingly effective for locally isotropic geometries when inspected in the 

through-transmission set-up.

In the second forward model, we consider the effects of raybending by implementing the 

fast marching method (FMM) [37] (unlike Dijkstra’s algorithm, which is used in [7], the fast 

marching method diminishes the grid bias and converges to the underlying geodesic distance 

when the grid step size tends to zero [38]). Let τ(xi, yj, tx) denote the shortest time for a wave 

to travel from the transmitter tx ∈ ∂I , on the boundary of the discretised representation of our 

image domain I = x × y , to the point (xi, yj) ∈ I  (in our setting, x and y are typically vectors 

of points spaced at 1 mm intervals along the horizontal and vertical axes of our component). 

The travel-time field τ can be obtained by solving the Eikonal equation, |∇τ | = 1/m̂ using 

an upwind finite difference scheme [39–41] where m̂  is a recti-linear grid of wave speeds 

obtained by discretising the material model m(S, V , M). By calculating the travel-time field 

for each transmitter, the shortest travel-time between each transmitter tx and receiver rx can be 

calculated and the matrix Tm constructed. It is well known that the fast marching method is not 

accurate along diagonal trajectories on coarsely discretised domains as it considers only near-

est neighbours of each node and, as the wave front propagates through the rectangular grid, 

errors accumulate along the directions which lie between the axes vectors. To combat this, 

we adopt the MSFM [31] which operates by additionally rotating the initial four-point stencil 

by 45◦, allowing neighbouring nodes along the diagonal to contribute to the shortest time 

calculations at each point. Note that here we use only a first order finite difference scheme to 

approximate the directional derivative as it has been proven to be unconditionally stable [39]. 

However, a mixed order scheme which is nominally second order accurate (it reverts to a first 

order approximation when the travel-times for the second order approx imation are unavail-

able) can also be implemented within the multistencil framework [31].

To demonstrate the advantage of employing the MSFM, figure 3 depicts two travel-time 

fields arising from solving the Eikonal equation  through a heterogeneous material model 

m̂  (the discretised representation of the map shown in figure 10(a)) using (a) the standard 

fast marching method and (b) MSFM. In both cases the source is located at the top of the 

domain, 24 mm along the horizontal axis. The travel-times are calculated over a coarse grid 

with 1 mm2 cells to allow efficient computation over the entire domain (which has an area of 

64 mm × 40 mm). The arrival times at a set of points placed at a depth of 40 mm, at 2 mm 

intervals along the horizontal axis, are plotted for both cases in plot (c) (the dashed line arises 

from the FMM and the dotted line arises from the MSFM algorithm). To examine the accuracy 

with which the travel-times are calculated using these methods, a full finite element simulation 

of the wave propagation through this material model was also run. The domain, measuring 

64 mm  ×  40 mm, was meshed with square elements with side lengths of approximately 260 

µm. A 1.5 MHz sinusoidal pulse was used to excite a single source located 24 mm along the 

x axis at a height of y  =  40 mm. An array of 32 receivers were distributed at 2 mm intervals 

along the bottom of the geometry (y  =  0 mm). The solid line in figure 3(c) depicts estimates of 

the first arrival times extracted from this full finite element simulation of the wave propagation 

through the medium (this data itself is subject to minor errors dependent on the threshold at 
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which the first time-of-arrival is estimated). Note that the FMM achieves a reasonable fit when 

the wave is propagating vertically (around receiver index 12, directly opposite the source) 

but fails to capture the behaviour of the data elsewhere. The MSFM is more accurate across 

the full set of receivers and this improved accuracy incurs a small additional computational 

expense (circa 7%). We see in section 3.3 that this additional expense is offset by the fact that 

we do not need to consider ray length when parametrising the data uncertainty.

Note that in the pulse-echo case, the shortest time for a wave to travel between the trans-

mitter and receiver arises from the path that the surface wave takes. However, we want to 

consider the time of arrival taken for the longitudinal wave to travel from our transmitter at tx 

to the back wall of the component at a depth y  =  d, back to the receiver at rx, and so the grid 

on which we implement the MSFM must be modified. This is achieved by reflecting the mat-

erial geometry across the horizontal axis at d, effectively doubling the size of the domain and 

creating a virtual receiving array at y  =  2d (see figure 4). The wave is then propagated through 

the extended material map from the original transmitter tx to the mirrored, virtual receiver r∗x .

3.3. Uncertainty parametrisation

An important consideration to make when employing a transdimensional inversion scheme 

is the parametrisation of the data uncertainty. This uncertainty arises from data measure-

ment errors and from simplification of the physical phenomena by the forward model [42]. 

Figure 3(c) showed that by using a more sophisticated forward model, the residuals between 

the modelled data and observed data (in this case arising from a finite element simulation—

solid line) can be reduced but not eliminated. Regardless of the model’s enhanced ability to 

capture the physics of the problem, any remaining differences will be magnified when the 

observed data arises from experiment: as data noise becomes more prevalent, extracting the 

first times of arrival becomes subject to increased error. In this work, we treat the uncertainty 

as a single unknown, which aggregates the uncertainty inflicted on the system by both data 

noise and model deficiencies. Much work was done in [29] to examine different approaches 

to data noise parametrisation, and it was shown that parametrising the travel-time uncertainty 

as a function of ray length is an effective strategy. It can be seen from figure 3(c) that when 

the standard FMM is employed (dashed line), this assumption is valid: the points directly 

under the source (around receiver index 12) will presumably arise from ray paths with a 

10 20 30 40 50 60

Width (mm)

w

10

15

20

25

30

35

D
e

p
th

 (
m

m
)

0

1

2

3

4

5

6

7

8

9

T
im

e

10 20 30 40 50 60

Width (mm)

w

10

15

20

25

30

35

D
e

p
th

 (
m

m
)

0

1

2

3

4

5

6

7

8

9

T
im

e

5 10 15 20 25 30

Receiver Index

a

b

c

d

e

f

g

T
im

e
 o

f 
fl
ig

h
t 

(s
)

FE

FMM

MSFM

(a) (b) (c)

Figure 3. Travel-time fields through a heterogeneous material model m̂  calculated by 
(a) the standard fast marching method and (b) the multistencils fast marching method 
(MSFM). The transmitting ultrasonic array element tx is located at the top of the 
component at a horizontal position of 24 mm. Plot (c) shows the calculated arrival times 
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40 mm) obtained by a finite element simulation of the wave propagation (solid line), the 
fast marching method (dashed line) and the MSFM (dotted line).
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shorter length than those lying near the vertical edges of the domain, and accordingly, these 

exhibit comparably smaller errors. However, to implement this parametrisation of the data 

noise exactly, the ray must be traced from the receiver to the source through the calculated 

travel-time field, creating significant additional computational expense. Fortunately, it can 

be observed that when the MSFM is implemented, the travel-time uncertainty appears to be 

independent of ray length (figure 3(c) dotted line) and so this approach is less relevant and 

the ray tracing step can be neglected. Instead, we will allow the algorithm to infer the uncer-

tainty level present in the system by drawing values from a uniform distribution over some 

predefined range. The level of uncertainty attributed to the dataset has a direct impact on the 

complexity of the solution. By restricting the range too much, the algorithm will overfit the 

data, increasing the complexity of the model in order to minimise the data misfit. Permitting 

larger data uncertainties will allow the algorithm to fit the data with lower dimensional mod-

els. In this paper, we will allow the standard deviation of the noise parameter, σn  to explore a 

range of values in the interval between 0.01 µs and 1 µs (the average travel-times are around 

10 µs) and in each case the standard deviation in the uncertainty converges to a distribution 

with mean value in this range.

3.4. A probabilistic framework

The rj-MCMC method produces a posterior distribution for transdimensional spaces (that 

is when the number of degrees of freedom of the material model is not fixed). Its basis in a 

Bayesian framework necessitates that all information is written in probabilistic terms. The 

posterior probability density function is given by Bayes’ rule, p(m|T0) ∝ p(T0|m) p(m), 
where p(m) is the a priori probability of the material model m and p(T0|m) is the likelihood 

that the observed ToF data T0 arises from that model. Naturally, the likelihood must somehow 

Figure 4. The MSFM requires modification to cope with pulse-echo inspection 
geometries. The material map is mirrored over the horizontal axis at y  =  d and a virtual 
receiver r∗x , is created at y  =  2d.
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account for the misfit between the observed data and the data arising from a given material 

model. In this work we use the least squares misfit function φ = ‖(Tm − T0)/σn‖
2
, where σ2

n  is 

the variance of the uncertainty parameter. The best fitting material model m will be the model 

where this misfit is minimised. This is equivalent to maximising the probability of a Gaussian 

likelihood function and so can be written as p(T0|m) ∝ exp(−φ/2). To calculate the poste-

rior probability density function we also require information on the prior, p(m). In this work, 

we choose the prior probability density functions for each model parameter to be a uniform 

distribution, as used in [27–29]. However, other weakly infromative priors such as Jeffrey’s 

prior [43] or the Gamma distribution could be implemented and will be studied by the authors 

in future applications of the method. Given that we are interested in reconstructing random 

media and we have no prior knowledge of the covariance between the model parameters, we 

choose the partitioning of the spatial domain to be independent of the regional wave speed 

assignment and system noise level. The full a priori probability density function can then be 

written as a product of the probability density functions of the individual model parameters. 

Firstly, we allow the prior on the number of Voronoi cells used to parameterise the material’s 

underlying structure, p(M), to be defined by a discrete uniform distribution given by

p(M) =

{

1/∆M, if M ∈ M

0, otherwise,

where M = [Mmin, Mmin + 1, ..., Mmax − 1, Mmax], ∆M = Mmax − Mmin + 1 and the bounds 

Mmin, Mmax ∈ Z are chosen to reflect the wavelengths present in our system (our ultrasonic 

wave is most distorted by regions of size commensurate with the wavelength and so this 

determines the minimal resolution we require and can thus be used to define Mmax). The wave 

speeds, vi ∈ V , can be altered to reflect any prior information on the constituent materials of 

the component under inspection. In the case of the media studied in this paper, we assume the 

wave speeds are uniformly distributed

p(vi) =

{

1/∆v, if vmin � vi � vmax

0, otherwise,

and due to the independence of the wave speed of one cell from another we have

p(V|M) =

M∏

i=1

p(vi).

Here, vi is measured in m s−1 and ∆v = vmax − vmin + 1, where the bounds vmin and vmax on 

the range of vi can be chosen by selecting sensible bounds on the speed of sound through the 

materials of interest. This can of course be further restricted if reliable statistics on the dis-

tribution of materials (and therefore speeds) throughout the component under inspection are 

available. However, it is important to note that the choice of these limits directly influences the 

efficiency and ability of the rj-MCMC algorithm to reconstruct a viable approximation of the 

material map: providing a narrow prior on the wave speed could inhibit the algorithm’s ability 

to properly sample the model space, subsequently biasing the solution. Conversely, if the prior 

is prescribed as a very broad uniform distribution, the model space could become prohibi-

tively large and solutions which fit the observed data well but produce material maps which 

exhibit properties that are unphysical, may be considered. Assuming that the seed positioning 

has a uniform probability distribution, and that our M seeds must have M distinct locations 

(that is the seeds cannot lie on top of each other), we have

K M M Tant et alInverse Problems 34 (2018) 095002
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p(S|M) =

[

|I∗|!

M!(|I∗| − M)!

]

−1

where |I∗| is the cardinality of our computational domain where the discretisation is deter-

mined by the numerical precision with which the seed co-ordinates are assigned. Finally, to 

define the prior on the level of uncertainty present in the system, we have

p(σn) =

{

1/∆σn, if σmin
n � σn � σmax

n

0, otherwise,

where ∆σn = σmax
n − σmin

n + 1 and σmin
n  and σmax

n  are chosen as discussed in section 3.3. Thus, 

the probability of a given model m is

p(m) = p(M) p(V|M) p(S|M) p(σn) =
M!(|I∗| − M)!

∆M(∆v)M|I∗|!∆σn

,

provided that the model parameters lie within their predefined ranges, and is equal to 0 oth-

erwise. Since typically |I∗| ≫ 2M  and ∆v > 1, it is clear that models with fewer cells will 

be assigned a higher probability: this is in line with the parsimonious properties of Bayesian 

inference.

3.5. The rj-MCMC method

The nature of the rj-MCMC method can be inferred from its name: reversible-jump refers to 

the process of allowing dimensional jumps (that is, changes in the number of Voronoi cells 

M) in our material model space, which can later be reversed [26]; Markov chain dictates that 

we possess the memoryless characteristic so that each perturbation is solely dependent on the 

current model and not on its predecessors; and finally Monte Carlo stipulates that the process 

is iterated many times. To begin, the initial number of Voronoi cells, M, the system noise level 

σn , the Voronoi seeds si and corresponding wave speed values vi are drawn from their uniform 

prior distributions. This sparsity of prior information differentiates this work from the weld-

specific algorithms, in for example [7, 14]. Using either of the two forward models discussed 

in section 3.2, a first time of arrival matrix Tm is calculated. This is compared with the first 

time of arrival matrix extracted from the observed dataset, T0, and the posterior value p(m|T0) 

for the initial model is calculated. The material model is then perturbed to create a new model 

m′. Since the problem is ill-posed and thus sensitive to small changes, the model parameters 

are perturbed individually to isolate their effects. In [54] it is shown that large steps through 

parameter space can change the complexity of the solution towards which the rj-MCMC algo-

rithm converges, so our proposal strategy avoids this potential problem. Each model perturba-

tion is subject to proposal distributions which are the conditional probabilities of proposing a 

state m′ given m. In this work, the model can be perturbed in one of five ways:

 (1)  A wave speed change where the value of vi is changed in cell i, subject to

v′i = vi + Xσv

  where v′i is the proposed wave speed in cell i, X ∼ N (0, 1) is a random variable drawn 

from the standard normal distribution with mean 0 and variance 1, and σv is the standard 

deviation of the proposal distribution for wave speed.
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 (2)  A system noise change where the value of σn  is changed subject to

σ′

n = σn + Xσprop
n

  where σ′

n  is the proposed standard deviation on the noise parameter, and σprop
n  is the 

standard deviation of the proposal distribution for a noise perturbation.

 (3)  A cell move where the coordinates of a seed si = (xi, yi) are changed subject to

x′i = xi + Xσc

  and

y′i = yi + Xσc

  to obtain the perturbed Voronoi seed location s′i = (x′i , y′i), where σc is the standard devia-

tion of the proposal distribution for a cell move.

 (4)  A cell birth where an additional seed at a randomly selected location sn+1, is added to 

the set S (recall S is the set of 2D cartesian coordinates which define the seed locations), 

where sn+1 is drawn from the prior distribution on S. The wave speed assigned to this new 

cell is given by

v′n+1 = v∗n+1 + Xσb

  where v∗n+1 is the wave speed in the previous model at the point sn+1 and σb  is the standard 

deviation on the wave speed proposal for a birth perturbation.

 (5)  A cell death where a randomly selected seed at location si ∈ S is removed from the set S.

Note that steps 4 and 5 result in a dimensional jump in the model: if our model m has M 

cells, a birth would result in the perturbed model m′ having M  +  1 cells, whilst a death would 

leave only M  −  1 cells. Once a perturbation has been made, the posterior p(m′|T0) is calcu-

lated. The Metropolis–Hastings criterion

p(accept) = min

(

1,
p(m′|T0)

p(m|T0)

)

,

is used to determine whether the perturbation should be accepted. Once accepted, the model 

m′ replaces the material model m and the process begins again. If m′ is rejected, the model is 

discarded and the original material model m is repeated as the sample from the current itera-

tion and is perturbed again in the following iteration.

Poor choices of the standard deviations σv,σn
prop,σc,σb  will result in a slow exploration of 

the model space, negatively impacting the convergence of the Markov chain to the posterior 

probability distribution. There exists an extensive literature on how to best choose proposal 

probability distributions which efficiently search the model space [44–46]. In our work, they 

are tuned until the acceptance rates (that is the fraction of proposed samples that are accepted) 

lie somewhere between 23% and 44%, as declared optimal in [47]. Furthermore, to reduce the 

amount of tuning required, a delayed rejection scheme as used in [27] has been implemented 

for perturbations of type 1 and 3 (wave speed and seed location perturbations). The rejection 

of perturbations in a Metropolis–Hastings algorithm is of course essential in guaranteeing that 

the Markov chain converges to the intended posterior distribution. However, performance of 

the algorithm is also improved by decreasing the probability of remaining in the current state 

[48, 49], and so it is desirable to avoid persistent rejection of perturbations. Implemetation of 

the delayed rejection scheme allows secondary perturbations with smaller standard deviations 

(σdr
v < σv and σdr

c < σc) to be made on the rejection of the initial perturbation.
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3.6. Sampling the posterior distribution

To generate a reliable estimate of the posterior probability distribution, the model must be 

evaluated iteratively as it explores the model space. After the initial sampling period (which 

is influenced by the random starting point), the Markov chain begins importance sampling, 

where the higher likelihood regions of the model space are more densely sampled. Ideally, 

the algorithm is terminated when convergence of the Markov chain is achieved: that is when 

our ensemble of models exhibits a density proportional to the posterior probability distribu-

tion. This convergence is problematic to detect as it is effectively the measure of how well 

our constructed sample of the distribution represents the underlying stationary distribution of 

the Markov chain (which is unknown in practice). Diagnostic tools to measure convergence 

of the chain are reviewed in [50] and it is concluded that there is no dependable method to 

ensure that the finite sample generated by the MCMC method truly represents the underlying 

stationary distribution. And so, in this work, once the acceptance ratios have been tuned (as 

discussed in section 3.5), the misfit and data noise are monitored throughout the running of the 

algorithm to ensure that they are converging to values which align with our expectations based 

on our prior knowledge of the residuals between an observed dataset and a modelled dataset. 

Then, once the chain has been terminated, the number of cells, system noise and wave speed 

at arbitrarily selected points in the domain are plotted versus iteration (trace plots). We assume 

that the algorithm has successfully converged to the posterior distribution if these trace plots 

exhibit stationarity (that is when their statistical properties are constant in time). Note that 

it does not make sense for us to study the parameters which define the Voronoi diagrams in 

this way due to the transdimensional nature of the algorithm [27]. Once we believe we have 

achieved convergence, the initial samples are discarded (this is known as the burn in period 

and by removing these samples we can discount any bias towards the initial model [51]) and 

we use the ensemble of remaining samples to characterise the posterior probability distribu-

tion. After the burn in period, the ensemble of accepted models is resampled at a decimation 

interval κ, where κ is the relaxation time of the random walk (the number of steps required 

before we can expect to obtain a model that is considered independent of the last). To produce 

the mean image of the material map we project the sampled partition models into a spatial 

domain and average the results across all of the samples at each point in space individually. 

Given the large number of samples, when the Voronoi tessellations are stacked, the cells over-

lap and the resulting mean regional material map is effectively a continuous function of the 

plane. This framework allows the study of the standard deviation of the wave speed through-

out the image domain (the standard deviation across all models at each point in space can be 

calculated as easily as the mean) which can be exploited for uncertainty quantification studies.

4. Results

4.1. Reconstruction of simple geometries

When several material phases are randomly distributed in a component it can be difficult to 

visually assess the agreement between the reconstructed material map and the actual mat-

erial map. Therefore we begin by studying a synthetic material featuring large monophase 

regions. We examine the case of a 25 mm diameter disc with a longitudinal wave speed of 

4000 m s−1 embedded in a host material with a longitudinal wave speed of 6500 m s−1 (see 

figure 5(a)). This example demonstrates that although we partition the domain using polygo-

nal Voronoi cells, we can in fact reconstruct curved boundaries in the mean wave speed map. 

A phased array inspection (in the through-transmission format) was simulated in the finite 
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element package PZFlex [52] where the geometry was meshed with square elements with 

side lengths of approximately 260 µm. Absorbing boundary conditions were employed on 

the vertical edges of the domain to ensure energy was not reflected back into the domain at 

these edges (we assume the domain we are imaging forms only a subsection of a larger comp-

onent). Free boundary conditions were assigned to the top and bottom edges of the domain 

on which the arrays were placed. A 1.5 MHz sinusoidal pulse (giving rise to a wavelength of 

λ = 4.3 mm) was used to excite the system which consisted of two 32 element phased arrays 

placed directly opposite each other on either side of the rectangular component. The arrays 

had a pitch (element spacing) of 2 mm and the depth of the component was 50 mm. The simu-

lated domain extended 5 mm either side of the array giving rise to an inspection domain with 

dimensions 74 mm × 50 mm (although only the 64 mm × 50 mm area directly between the 

arrays is reconstructed below). It is important to note that the PZFlex software models many 

of the physical phenomena present in the ultrasonic phased array inspection, for example 

mode conversion and diffraction, and it has previously been validated against experimental 

data [53]. We treat these aspects of the data as system noise. Coupled with the subjectivity 

involved in selecting the first time of arrival from the simulated time-domain data, the levels 

of uncertainty present in the simulated data imitate those present in experimentally collected 

data and so the addition of synthetic noise is not required here.

The resulting dataset was then interrogated twice: firstly, the inversion algorithm employed 

the straight ray assumption in the forward model, before raybending was included via the 

implementation of the MSFM algorithm. A deliberately high contrast in wave speed was cho-

sen to assess the importance of using raybending in the forward model: in this case, a straight 

ray which would bisect the disc would be faster circumventing the disc entirely and it is inter-

esting to examine how this affects the reconstructions.

The rj-MCMC algorithm was run for 20 000 samples, where the first 2000 samples were 

discarded (the burn in period), and the remaining models were sampled at an interval of 

κ = 100. To ensure a fair comparison between the forward models, a random seed was used so 

that the initial Voronoi diagram was the same in both cases (shown in figure 5(b)). Considering 

the case where the straight ray assumption is made first, we obtain the material map plotted 

in figure  5(c), which shows the mean of the posterior probability distribution. Although a 

lower wave speed anomaly has been reconstructed in the centre of the domain, the area of this 

anomaly is much smaller than that present in the known map (see figure 7 and its accompany-

ing quantitative analysis). By using the straight ray forward model in our inversion, we do not 

account for the possibility that the wave can find a faster path than the direct route. Therefore, 

the algorithm compensates for this by reducing the size of the low wave speed anomaly to 

expedite the waves progress along the straight ray paths and reduce the residuals between the 

observed data and the model. In figure 5(e), the mean of the posterior distribution for the case 

in which raybending is implemented in the forward model is plotted. By allowing the forward 

model to explore wave paths other than the straight line between the transmitter and receiver, 

we can much better reconstruct the full extent of the low wave speed anomaly.

Figures 5(d) and (f) plot the standard deviation at each pixel in the reconstruction for their 

associated reconstructions shown in (c) and (e) respectively. The uncertainty loop that is present 

in the centre suggests that the problem is poorly constrained on the boundary of the anomaly; 

the pixels here move between the two regions. Such uncertainty loops have been conjectured 

to exist in almost all nonlinear tomography problems and have been demonstrated in both Love 

wave travel-time tomography [36] and in the diffusive regime in electrical resistivity tomogra-

phy [54]. This phenomena is examined in more detail in figure 6, where the histograms depict-

ing the posterior distributions of the wave speed at three points in the spatial domain have been 

plotted (these values are recorded at every 100th iteration). Plots (a) and (b) show the posterior 
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Figure 5. Material map reconstructions for a simplistic synthetic geometry where a 
low wave speed disc of diameter 25 mm is embedded in a high wave speed medium. 
Plot (a) shows the true geometry. Plot (b) is the initial, randomly assigned, material 
parametrisation. Plots (c) and (d) show the mean and standard deviation of the posterior 
distribution at each point in space when the waves are assumed to travel in straight lines 
between the transmitter and receiver. Plots (e) and (f) show the corresponding mean 
and standard deviation when raybending due to refraction is included in the forward 
model. The data used was through-transmission travel-times between a transmitting 
array spanning the top of the domain shown and a recording array spanning the base of 
the domain, each array having 32 evenly spaced individual elements.
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distribution for a point lying in the disc and in the host medium respectively. The larger stand-

ard deviation present in plot (a) (measured at x  =  32 mm,y  =  25 mm) is reflected in the central 

region of the uncertainty map shown in figure 5(f) and it can be observed that the algorithm 

struggles to correctly reconstruct the value of the disc in figure 5(e). The lower uncertainty 

at the point located in the host medium (measured at x  =  60 mm, y  =  42 mm) is reflected in 

the much narrower probability density approximated in plot (b). More interestingly, when the 

posterior distribution for the wave speed at a point lying on the uncertainty loop is examined 

(for example at x  =  22 mm, y  =  26 mm), a bimodal distribution can be observed (as in fig-

ure 6(c)). It is clear that the algorithm sometimes considers this point to lie within the disc and 

sometimes considers it to lie outside of the disc.

By plotting a cross section of the material map through the centre of the disc, we compare 

the wave speed profiles obtained by both forward models against that of the known map. From 

figure 7(a), we can see that by implementing raybending (dashed line), we better capture the 

true diameter of the low wave speed anomaly (solid line) than when we use the straight ray 

assumption (dotted line). Quantitatively, if we subtract each of the reconstructed wave speed 

profiles from the known profile, we obtain root mean square errors (RMSE) of 1054 m s−1 

when the straight ray assumption is employed and 490 m s−1 when the MSFM is implemented 

(errors of 42% and 20% respectively, relative to the 2500 m s−1 range of wave speeds present 

in the material map). On examination of the standard deviation across the reconstructed map 

plotted in figure 5(f), we observe another uncertainty loop on the boundary of the disc. A cross 

section of this is plotted (dashed line) alongside a cross section of figure 5(d) (dotted line) 

in figure 7(b). Note that we observe increased uncertainty on the boundary of the disc (the 

location of which are marked by the solid lines) when raybending is included in the forward 

model: since we have better reconstructed the difference in wave speed between the anomaly 

and the host medium, the boundary pixels experience a greater variation in values. The size 

of our low wave speed anomaly can be effectively measured by taking the distance between 

these two peaks. In the straight ray case we obtain a horizontal diameter measurement of 

9 mm, giving rise to a relative error of 64%. By implementing the MSFM as the forward 
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Figure 6. Histograms depicting the posterior distributions of the wave speed (recorded 
at every 100th sample) at three points in the spatial domain: (a) at x  =  32 mm, 
y  =  25 mm (inside the disc), (b) at x  =  60 mm, y  =  42 mm, (in the host medium) and (c) 
at x  =  22 mm, y  =  26 mm (on the uncertainty loop).
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model we obtain an improved measurement of 22 mm (and a reduced relative error of 12%). 

The width of the peaks in figure 7(b) can also be viewed as a measure of resolution and could 

potentially be reduced (and thus the resolution enhanced) by increasing the coverage of the 

inspection domain (that is by employing more sources and receivers) and using a finer grid 

when computing the travel-time fields using the MSFM. However, both of these adjustments 

would significantly increase computational expense.

The 2000th and 20 000th samples of the posterior distribution for both cases (where the 

straight ray assumption is used and where raybending is modelled) are shown in figure 8. It 

can be observed that in the straight ray case (plots (a) and (b)), the domain is partitioned into 

more Voronoi cells. This can be attributed to the fact that the model fails to capture the behav-

iour of the wave front propagation. More explicitly, because the modelling assumptions are 

inconsistent with the recorded data. the data may appear to be self-contradictory with respect 

to the assumed physics. Hence the data should not be expected to be consistent with a simple 

model, even in the case where a simple structure exists in reality. In such cases, the algorithm 

partitions the domain into more cells in an attempt to better fit the data. However, when the 

MSFM is implemented within the forward model, fewer cells are required to describe the 

geometry (plots (c) and (d)). This demonstrates the natural parsimony of the Bayesian inver-

sion; if two models fit the data equally well, the simpler model (in this case, the model with 

fewer cells) will be assigned higher probability [55]. Comparing the posterior distribution on 

the number of cells for both cases (see figure 9), we obtain a far narrower distribution when 

raybending is included in the model. We observe that the distribution is skewed to the right 

(due to the lower bound of Mmin = 4 placed on the prior for the number of cells), has median 

6 and an interquartile range (IQR) of 2. A broader distribution with median 25 and IQR of 6 

is observed in the case where the straight ray assumption is made.

4.2. Reconstruction of a random medium

To quantify the potential of the rj-MCMC algorithm for flaw image correction, a simula-

tion of the through-transmission ultrasonic phased array inspection of a locally isotropic ran-

dom media was run in the software package PZFlex [52]. An arbitrary Voronoi diagram with 

M  =  100 seeds was used to create the random geometry (it was then discretised for use as 
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Figure 7. Cross sections of (a) the reconstructed wave speed maps where the solid line 
represents the known wave speed profile, the dotted line arises from the straight ray 
assumption and the dashed line arises from the inclusion of raybending, and (b) the 
uncertainty maps where the dotted line arises from the straight ray assumption and the 
dashed line arises from the inclusion of raybending.
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Figure 8. Samples from the posterior distribution of Voronoi diagrams. Plots (a) and (b) 
are the 2000th and 20 000th samples respectively arising from the case where straight 
rays are used in the forward model. Plots (c) and (d) are the 2000th and 20 000th samples 
arising from the case where the effects of raybending are included in the forward model.

Figure 9. Histograms showing the posterior distributions on the number of Voronoi 
cells used to partition the spatial domain for (a) the case where straight rays between 
transmitters and receivers are used to calculate the first times of arrival and (b) where 
the MSFM has been used to consider the effects of raybending on the first times of 
arrival.
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input for the PZFlex simulation). The geometry featured regions with dimensions commensu-

rate with the size of the wavelength of the incident wave (approximately 3–5 mm) and these 

were randomly assigned wave speeds ranging between 4500 m s−1 and 7000 m s−1, creating 

a highly scattering environment (see figure 10(a)). A 4 mm diameter circular void was embed-

ded in the centre of the geometry (imaging of this defect is used as a proxy means of quantify-

ing the successful reconstruction of the material map in section 4.3.1). A 1.5 MHz sinusoidal 

pulse was used to excite the system which consisted of two 32 element phased arrays placed 

directly opposite each other on either side of the rectangular component. The arrays had a 

pitch (element spacing) of 2 mm and the depth of the component was 40 mm, giving rise to an 

inspection domain with dimensions 64 mm × 40 mm. The geometry was input into PZFlex 

and meshed with square elements with side lengths of approximately λ/15 ≈ 200 µm. The 

resulting FMC dataset was processed to yield a ToF matrix T0 (similar to those shown in fig-

ure 2) and this was taken as the input for the rj-MCMC algorithm.

The rj-MCMC algorithm was run for a single Markov chain, for 100 000 samples, where 

the first 20 000 samples were discarded and the remaining samples were retained at an interval 

of κ = 100. From the results shown in section 4.1, we observe that by including the effects 

of raybending in our forward model, the spatially varying wave speed can be more accurately 

reconstructed, so from this point forward we will only consider this case. Figure 10(b) shows 

our reconstructed map (the mean of the posterior distribution) and it can be observed that 

there is no indication of the defect. This can be attributed to the fact that the properties of the 

circular void do not fall within the finite range of wave speeds dictated by the prior, and so the 

algorithm cannot reconstruct it. The standard deviation of the wave speed at each pixel within 

our inspection domain is plotted in figure 10(c). Note that we observe high levels of uncer-

tainty on borders between high and low wave speed regions, for the same reason we observed 

our uncertainty loops in section 4.1. There is also a clustering of high uncertainty near the 

centre of the map which could be a symptom of the algorithm’s inability to assign the correct 

wave speed to the flaw region.

Figure 11 plots two Voronoi diagrams drawn from the posterior distribution. Plot (a) shows 

the model generated on the 35 000th iteration and plot (b) shows the model used for the final 

iteration of the model. Due to the lack of distinct features in the randomly generated geometry, 

and the transdimensional nature of the algorithm, it is difficult to visually compare the two. 

However, it can be observed that we do in fact have some consistency in regions shown to have 

low variance in figure 10, particularly around the regions which have reconstructed with high 

velocities (the yellow regions in figure 10(b)).

To examine a more industrially relevant scenario, the simulation described above was 

rerun, this time featuring a single array which was responsible for both the transmission and 

reception of the ultrasonic signals (a pulse-echo inspection). The times of flight were extracted 

from the dataset by cross correlating the input signal with the received signals and these were 

then used as input for the rj-MCMC inversion. All priors and proposal distributions for the 

inversion were identical to those in the through-transmission scenario and the resulting map 

and its standard deviation are shown in figures  12(a) and (b) respectively. The reason the 

maps generated by the two data acquisition geometries differ can be attributed to the fact that 

the through-transmission scenario affords increased coverage of the domain and that larger 

errors are incurred in the estimation of the time of arrival data in the pulse-echo case. This is 

also reflected in the level of system noise inferred by the rj-MCMC algorithm. The posterior 

distributions on the noise parameters are plotted in figure 13, where plot (a) arises from the 

through-transmission case and plot (b) arises from the pulse-echo case. It can be observed 

that the mean noise level is significantly higher in the pulse-echo case. Furthermore, from 

figure 14, it can be observed that the median number of cells used to partition the domain (we 
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examine the median as the distribution in the pulse-echo case appears to be left-skewed) is 

lower in the through-transmission case than in the pulse-echo case (110 compared to 149), 

suggesting that the algorithm struggles more to fit the noisier data of the pulse-echo inspection 

than that of the through-transmission inspection.

4.3. Flaw imaging using the reconstructed material map

The TFM is the benchmark imaging algorithm within the ultrasonic NDT industry [25]. The 

technique also arises in other fields where data is collected by an array of sensors: in seismol-

ogy it is referred to as migration [56] and in the medical field it is known as delay and sum 

beamforming [57]. The algorithm calculates the distance from each transmit element to each 

pixel and then from the pixel to each receive element. When assuming a constant wave speed 

throughout the domain, the time this journey takes can be estimated and related to a point on 

the relevant A scan. Each pixel is then coloured by summing these amplitudes over the set of 

transmit/receive pairs and can be written [25]
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where cl is the estimated constant longitudinal wave speed in the host material, xtx and xrx
 

are the x-coordinates of the transmit and receive array elements and wi,j is the intensity of the 

image in the pixel (xi, yj).
To account for our wave speed map, we employ the MSFM once more. Treating each trans-

mitting element in turn as a source, a set of N travel-time fields τ j(x, y), j = 1, ...N, through 

our wave speed reconstruction are generated, providing us with the travel-times to each pixel 

in the imaging domain from each source. Since source-receiver reciprocity holds, these travel-

time fields also represent the time taken for the wave to travel from each pixel back to each 

receiver. To create an image of our inspection domain, the intensity at each pixel can therefore 

be written

wi,j =

∣

∣

∣

∣

∣

N
∑

tx=1

N
∑

rx=1

Atx,rx
(τ tx(xi, yj) + τ rx(xi, yj))

∣

∣

∣

∣

∣

, (2)

where τ tx(xi, yj) is the time taken for the wave to travel from source tx to the pixel (xi, yj) and, 

similarly, τ rx(xi, yj) is the time taken for the wave to travel from the pixel (xi, yj) to the receiver 

rx. This modified TFM approach, which incorporates the wave speed map and raybending, 

will be referred to as TFM+  throughout the remainder of this paper.

4.3.1. Flaw reconstruction results. The success of the wave speed maps shown in section 4.2 

is now measured via their use in conjunction with the TFM+  algorithm as developed in equa-

tion  (2). The RMS longitudinal wave speed through this heterogeneous medium was esti-

mated as 5081 m s−1 with a standard deviation of 474 m s−1. This was calculated using the 

times corresponding to the back wall echo in the A-scans where transmission and reception 

took place on the same element. This high standard deviation provides some measure of the 

extreme heterogeneity of the medium. The flaw reconstruction displayed in figure 15(a) arises 

from application of the standard TFM (see equation (1)) where the RMS longitudinal wave 

speed cl  =  5081 m s−1 has been assumed over the entire imaging domain. Image (b) shows a 

close up of the region centred on the known location of the flaw (the exact size and location 

is represented by the black circle in both images which are plotted on a decibel scale and 
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Figure 10. Material map reconstructions for a random medium generated by data arising 
from a simulated through-transmission inspection. Plot (a) shows the known material 
geometry based on a Voronoi tessellation as input to the finite element simulation. The 
white disc represents the embedded flaw which is assigned void properties. Plot (b) 
shows the mean of the posterior distribution of the reconstructed wave speed map and 
plot (c) depicts the corresponding standard deviation.
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Figure 11. Voronoi tessellations drawn from the posterior distribution for the 
reconstruction of a random media from through-transmission data. Plot (a) shows 
iteration 35 000 and plot (b) shows iteration 100 000.
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Figure 12. Material map reconstructions for a random medium generated by data 
arising from a simulated pulse-echo inspection. Plot (a) shows the mean of the posterior 
distribution of the reconstructed wave speed map and plot (b) depicts the corresponding 
standard deviation.
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normalised with respect to the highest amplitude). Although some scattering takes place in 

this region, the energy is dispersed and it is not possible to differentiate this from noise. The 

maximum intensity in the image occurs at a distance of 10.4 mm from the known centre of the 

flaw (this can be seen in the bottom right corner of image (b)). As a proof of concept that the 

material map can enhance our ability to successfully image a flaw, the TFM+  algorithm was 

applied to the same dataset, incorporating a coarse discretisation (1 mm  ×  1 mm grid size) of 

the true map as shown in figure 10(a). The results are shown in figures 15(c) and (d) and it 

can be observed that the images display an increased intensity within the region occupied by 

the flaw. The distance between the location of maximum intensity and the known centre of 

the flaw is now only 0.8 mm, a ten-fold improvement on that achieved by the standard TFM.

Now that it has been shown that an accurate map of the underlying material properties 

of a component can be used in conjunction with the TFM+  algorithm as described in equa-

tion  (2) to obtain improved images, we apply the TFM+  using our reconstructed material 

maps. Firstly, we use the map obtained from through-transmission ultrasonic measurements 
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Figure 13. Histograms showing the posterior distributions on the system noise 
(recorded at every 100th iteration) for (a) the through-transmission inspection case and 
(b) the pulse-echo inspection case.

Figure 14. Histograms showing the posterior distributions on the number of cells for 
(a) the through-transmission inspection case and (b) the pulse-echo inspection case.
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and the result is shown in figure 16(a) (a cropped region centred on the flaw is depicted in 

image (b)). Notice in image (a) that we have better concentration of energy near the known 

location of the defect than that observed in figure 15(a). If we take the highest amplitude 

point in image (b) as an indication of the flaw location, this is 1.2 mm away from the known 

centre of the flaw, which is a substantial improvement on the 10.4 mm error obtained when 

the standard TFM is employed. The map reconstructed from the data arising from the more 

industrially relevant, pulse-echo scenario was also exploited by the TFM+  and the results 

are shown in figures 16(c) and (d). The image exhibits more noise than that obtained using 

the through-transmission data, but still results in a six-fold improvement over the basic TFM 

in terms of flaw location, exhibiting an error of only 1.8 mm. However, it must be noted that 

although computation times are not quoted in this paper (our implementation of the rj-MCMC 

could benefit from extensive optimisation and parallelisation and so a comparison to real-time 

TFM [58] would be difficult), it is clear that the improvement in flaw characterisation and 

sizing comes at significant computational cost. The method will be of most value therefore 

when imaging flaws in difficult materials where TFM imaging based on a homogeneous wave 

speed assumption fails. The method will also be of interest to those interested in recovering 

the interior texture of a heterogeneous material.
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Figure 15. TFM reconstructions of the 4 mm void embedded in the random, 
heterogeneous medium as depicted in figure 10(a). Image (a) arises from application 
of the standard TFM algorithm with a constant wave speed cl  =  5081 m s−1 assumed 
throughout the domain. Image (b) is a close up of a 20 mm2 region centred on the 
known location of the flaw. Image (c) depicts the results when the true material map 
is used in conjunction with the TFM+  imaging algorithm and image (d) is a close up 
of the same 20 mm2 region centred on the known location of the flaw. In each image, 
the black circle depicts the actual size, shape and location of the defect. Each plot was 
normalised with respect to its highest amplitude and plotted on a decibel scale.
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4.3.2. ROC curve analysis. A ROC curve plots the performance of a binary classifier system 

as its discrimination threshold is varied [32, 59]. Previously, within the NDT community, 

ROC curves have been constructed by running numerous experiments and/or simulations of 

different inspection scenarios, featuring assorted defects at different locations throughout the 

component and evaluating the probability of detection for each case [60]. Here, we instead 

develop a methodology to address the subjectivity involved in the analysis of the image of 

a single flaw, and present a quantitative technique to compare two imaging algorithms’ per-

formance on a single dataset. To formulate ROC curves which represent the success of our 

TFM and TFM+  images, we develop a binary classifier system which determines whether an 

image segment lies within the flaw domain. We first use the known material map (as input into 

the finite element simulation) in conjunction with the TFM+  algorithm to generate a reliable 

image of the flaw (see figure 15(c)). This image is then partitioned by a regular grid with side-

length δ = 1 mm. The grid cells which contain pixels above the  −5 dB threshold are used to 

define the flaw domain ΩF  (at  −5 dB, there are no other artefacts in the image). The number 

of grid cells assigned to the flaw domain is recorded as np and the number of remaining grid 

cells is referred to as n f = nt
− n p, where nt is the total number of grid cells. These quantities 

are used to normalise the equivalent calculations when we compare the two images arising 
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Figure 16. TFM+  reconstructions of the 4 mm void embedded in the random, 
heterogeneous medium as depicted in figure 10(a). Image (a) depicts the results when 
the map of the spatially varying wave speed is reconstructed from data arising from 
a through-transmission inspection is used in conjunction with the TFM+  imaging 
algorithm. Image (b) is a close up of the 20 mm2 region centred on the known location 
of the flaw. Image (c) depicts the results when the wave speed map is reconstructed from 
data collected by a pulse-echo inspection is used in conjunction with the TFM+  imaging 
algorithm. Image (d) is a close up of the same 20 mm2 region centred on the known 
location of the flaw. In each image, the black circle depicts the actual size, shape and 
location of the defect. Each plot was normalised with respect to its highest amplitude 
and plotted on a decibel scale.
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from the TFM and the TFM+  algorithms. The ROC curve is produced by implementing the 

following steps:

 (1)  The images are partitioned using the same grid used to define ΩF .

 (2)  The number of grid cells which lie above a threshold D and lie within ΩF  is denoted n+ . 

The number of grid cells which meet this threshold but do not lie within ΩF  is denoted by 

n−.

 (3)  The probability of detection (PoD) value is calculated as n+/n p and the false positive rate 

(FPR) value is given by n−/n f .

 (4)  These calculations are repeated at decreasing thresholds to produce the ROC curve which 

plots the probability of detection against the false positive rate over the range of selected 

thresholds.

Here, we choose an initial threshold, D  =  −1 dB, and calculate the probability of detection 

and false positive rates at intervals down to  −40 dB. The ROC curves are plotted in figure 17 

for images arising from the standard TFM and the TFM+  where the reconstructed maps are 

generated by both through-transmission and pulse-echo ultrasonic inspections. Perfect classi-

fication performance is achieved when the ROC curve passes through the point (0,1), indicat-

ing 100% probability of detection with a false positive rate of 0. This can be quantified using 

the area under the curve (AUC) [61], the values of which are recorded in table 1. It can be seen 
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Figure 17. ROC curves for the images arising from the standard TFM and from 
TFM+  where the map is recovered from pulse-echo (PE) ultrasonic measurements and 
through-transmission (TT) ultrasonic measurements.

Table 1. Area under the curve values of ROC curves shown in figure 17, using the 
same key.

Method AUC

TFM 0.538 496

TFM+  (TT) 0.703 419

TFM+  (PE) 0.650 705
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from figure 17 and the respective AUC values that by using the TFM+  , we have an improved 

ability to correctly identify the flaw. Using the map arising from the through-transmission 

inspection (denoted by TT) in conjunction with the TFM+  exhibits the highest probability of 

detection to false positive ratio. The map arising from the pulse-echo inspection (denoted by 

PE) also provides a significant improvement on the image constructed by the standard TFM. 

However, as the decibel level is lowered, this image is subjected to more low level noise than 

both the standard TFM and TFM+  arising from the through-transmission data and this is 

reflected in its sudden increase in false positive rate (shown by the plateau around PoD  =  0.6). 

As discussed in section 4.2, it is likely that the map arising from the pulse-echo inspection is 

not as accurate as that arising from the through-transmission data capture as the pulse-echo 

data acquisition geometry provides sparser coverage of the domain and the extraction of the 

ToF data is subject to larger errors.

5. Conclusions

A stochastic, transdimensional approach for flaw imaging within the ultrasonic NDT industry 

has been proposed. By parametrising the heterogeneous medium by Voronoi diagrams and 

using the reversible jump MCMC method, locally isotropic inhomogeneous wave speed maps 

were reconstructed from simulated ultrasonic phased array data. It was shown that by using 

the MSFM to model the monotonically advancing wave front, the dependency of the data 

uncertainty on ray length could be reduced. This is advantageous as it negates the require-

ment to retrospectively raytrace through the calculated travel-time field which can become 

prohibitively computationally expensive. To demonstrate the reliability of the reconstructed 

maps, simple geometries were considered. Visually, these maps appeared to reconstruct key 

facets of the medium’s structure and, due to the dense and regular coverage provided by 

the data acquisition geometry, the MCMC algorithm converged to the posterior distribution 

relatively quickly. The methodology was then applied to a synthetic dataset arising from a 

randomly partitioned medium, exhibiting wavelength sized regions of highly contrasting wave 

speeds (between 4500 m s−1 and 7000 m s−1) and a centrally embedded 4 mm diameter void 

(also commensurate with the wavelength). It is more difficult to visually assess the similarity 

between the known and reconstructed maps in this case (where the medium exhibits no distinct 

patterns or features) and so the success of the material map’s reconstruction was measured 

by using it in conjunction with a flaw imaging algorithm and taking the improvement in flaw 

reconstruction as a proxy measurement. The NDT community’s benchmark imaging algo-

rithm, the TFM, was modified to consider the reconstructed maps, accounting for the varying 

wave speed throughout the component and the subsequent refraction induced by the structure 

(this method is referred to as TFM+). By correcting for the inhomogeneous wave speed map, 

a six-fold improvement in flaw location was achieved. To ensure that the compariso n of imag-

ing algorithms was not biased by the subjective choice of image thresholding, a methodology 

to calculate ROC curves for each image was developed and it was thus shown that by using 

the TFM+  , the probability of detection rates were enhanced in both the through-transmission 

and pulse-echo modes of operation.
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