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Size and shape distributions are among critical quality attributes of particulate products and their inline
measurement is crucial for monitoring and control of particle manufacturing processes. This requires
advanced tools that can estimate particle size and shape distributions from multi-sensor data captured
in situ across various processing steps.
In this work, we study changes in size and shape distributions, as well as number of particles during

high shear wet milling, which is increasingly being employed for size reduction in crystalline slurries
in pharmaceutical processing. Saturated suspensions of benzoic acid, paracetamol and metformin
hydrochloride were used in this study. We employ our recently developed tools for estimating particle
aspect ratio and particle size distributions from chord length distribution (CLD) measurements and imag-
ing. We also compare estimated particle size distributions from CLD and imaging with corresponding
estimates from offline instruments.
The results show that these tools are capable of quantitatively capturing changes in particle sizes and

shape during wet milling inline. This is the first time that such a capability has been reported in the lit-
erature. The ability to quantitatively monitor particle size and shape distributions in real time will enable
development of more realistic and accurate population balance models of wet milling and crystallisation,
and aid more efficient control of crystallisation processes.
Crown Copyright � 2018 The Society of Powder Technology Japan. Published by Elsevier B.V. This is an

open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
1. Introduction Crystallisation is a widely used separation and purification
Quantitative particle attributes such as particle size and shape
influence behaviours of slurries and powders such as flowability,
filterability and dissolution. These behaviours in turn determine
performance of various downstream operations carried out in the
manufacturing process as well as performance of resulting partic-
ulate products. Hence it is necessary that the particles possess the
desired particle size distribution (PSD) and shape for a particular
process or product application [1–3].
technique and it is routinely employed in pharmaceutical manu-
facturing [4]. Outcomes of a crystallisation process in terms of par-
ticle size and shape distributions are determined by a complex
interplay of nucleation, growth, agglomeration and breakage and
can vary widely from batch to batch or when input conditions or
process parameters are changed. There are several approaches pro-
viding empirical control of particle size distributions (PSD) in crys-
tallisation processes, such as seeding (to provide control over
particle number concentrations) [4] and high shear wet milling
(to provide control over particle size). In particular, high shear
wet milling is a size reduction technique increasingly used in phar-
maceutical processing to adjust size and shape distributions in
ar wet
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Fig. 1. Sketch of the setup used for the wet milling processes in this study.
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crystal slurries or generate small particles for effective seeding of
subsequent crystallisation steps [5–14].

Adi et al. [5] combined wet milling and wet sieving to produce
crystalline particles with a narrow PSD. Particle size analysis was
carried out using an offline laser diffraction instrument. Wilson
et al. combined wet milling and temperature cycling to adjust
the size and shape of needle-like particles [15]. Particle size and
shape measurements was carried out using an offline imaging
instrument. Yang et al. [8,10,12] used wet milling both to generate
seed particles and as a size reduction method for different crystalli-
sation processes. The processes were monitored by inline sensors
including the focused beam reflectance measurement (FBRM)
[16]. This measurement provides a chord length distribution
(CLD) for particles in suspension. The CLD is related to the size
and shape of the particles in suspension [16]. The total counts of
measured CLDs has been used as an indication for number of par-
ticles, while the mean square weighted chord length has been used
as an indication of particle size [8,10,12].

Even though CLD total counts are related to number of particles,
it is not straightforward to determine the actual number density of
particles in a slurry from CLD counts. Similarly, while CLD is related
to the PSD, it does not provide an actual PSD of particles. This is
because each particle with a given size and shape produces a
unique chord length distribution [16] and these are then convo-
luted in an average weighted by a characteristic particle size to
provide an overall CLD for the whole ensemble of particles of dif-
ferent sizes and shapes present in a slurry [17].

Instead of using the mean square weighted chord length as an
estimate for the mean particle size, it would be more realistic
and accurate to use an actual PSD determined from inline measure-
ments. For example, from transformation of CLD data [18,19]
obtained inline or from analysis of inline images [20]. Hence,
experimental wet milling studies could then benefit from the esti-
mated particle size and shape distributions. Consider the case of
needle-like particles undergo wet milling, their length is likely to
be reduced while their width would be much less affected. How-
ever, the most probable chord length for a needle-like particle is
the width of the particle [21] and so the change in particle length
may not be well reflected in the mean square weighted chord
length. But this mean square weighted chord length is currently
used as an indication for particle size even when needle-like parti-
cles are involved [12]. Furthermore, if the PSD is estimated from
data captured with inline instruments, there will be no need to
sample the slurry for offline estimates of the PSD.

In this work, we implement our recently developed computa-
tional tools, CLDInversionApp [22] and ImagingApp [23], in order
to quantitatively investigate changes in PSD and particle shape
during wet milling when the mill rotational speed is varied. The
PSDs are estimated separately from CLD and from imaging data
obtained by the inline FBRM and particle vision and measurement
(PVM) sensors, respectively. As the PSD is estimated from data cap-
tured by inline sensors, the computational tools enable us to mon-
itor changes in particle properties during the wet milling in real
time. We also introduce a new method for estimating the number
of particles in slurries from the estimated volume based PSD from
inline instruments. We analyse inconsistencies arising between
PSDs estimated from inline and offline instruments for the same
wet milling process, and discuss limitations of inline sensors
encountered during the study.

2. Methods

2.1. Materials

The following materials were used in this work: paracetamol
(> 98% USP), benzoic acid (> 99:5%), and metformin hydrochloride
Please cite this article in press as: O.S. Agimelen et al., Multi-sensor inline me
milling of crystal slurries, Advanced Powder Technology (2018), https://doi.org
(reagent grade). Paracetamol and benzoic acid were purchased
from Sigma-Aldrich and metformin hydrochloride was purchased
from Molekula. The benzoic acid particles were suspended in dis-
tilled water obtained from an in-house purification system, and
the surfactant Tween 20 from Sigma-Aldrich was added to the ben-
zoic acid slurry to ease dispersion of the particles and avoid foam-
ing. Paracetamol and metformin hydrochloride were suspended in
2-propanol (reagent grade, CAS: 67–63-0, Assay (GLC) > 99:5%)
obtained from Fisher Scientific, UK.
2.2. Equipment

The experiments were conducted in a closed loop setup consist-
ing of a Mettler Toledo OptiMax Workstation, a Watson Marlow
Du520 peristaltic pump and an IKA MagicLab (module UTL) rotor
stator wet mill. The OptiMax workstation consists of a 1L stirred
tank crystalliser, which was equipped with an inline Hastelloy
Pt100 temperature sensor, PVM and FBRM sensors for monitoring.
A sketch of the setup is shown in Fig. 1.

The rubber tubing used in the flow loop had an inner diameter
of 3.2 mm, the lengths of the pieces of tubing connecting the 1L
stirred tank to the wet mill, the wet mill to the peristaltic pump
and the peristaltic pump to the 1L stirred tank were 94.5 cm,
55 cm and 124 cm respectively. The internal volume of the wet
mill was 30 mL. The peristaltic pump was operated at 50 rpm cor-
responding to a volumetric flow rate of 350 mL/min. This then cor-
responds to a residence time of 5 s of the slurry in the wet mill.

The temperature of the outlet of the wet mill was monitored
with a thermometer attached to it. The outlet temperature was
controlled to match the temperature of the inlet flow to the wet
mill by means of a Lauda heater/chiller connected to the wet mill
as shown in Fig. 1. The process conditions of temperature and stir-
ring speed of the slurry in the Workstation were controlled using
the iControl v5.2 software from Mettler Toledo.

Data related to the size and the shape of the particles in the wet
milling processes was captured with the Mettler Toledo FBRM
G400 series and PVM V819 sensors within the stirred tank. The
asurements of crystal size and shape distributions during high shear wet
/10.1016/j.apt.2018.09.003
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1 The aspect ratio is defined here as the ratio of width to length of particles.
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FBRM sensor produces a focused laser beam which moves in a cir-
cular trajectory. The beam, when incident on a particle, traces out a
chord on the particle. The lengths of chords measured over a pre-
set period of time for particles in the slurry is then reported as a
CLD [16,18,24,25]. The PVM sensor takes images of the particles
using laser beams. The images are recorded on a CCD array which
are subsequently transferred to a computer. The size of each image
of the PVM V819 is 1360� 1024 pixels with a pixel size of 0:8 lm
[19].

Offline particle size and shape analyses were carried out using
the Malvern Morphologi G3 instrument. The Morphologi instru-
ment consists of a dispersion unit which utilises compressed air
to disperse the particles over a glass plate. Images of particles on
the plate are captured using a camera with a microscope lens.
The images are then analysed by the instrument software for size
and shape information.

2.3. Experimental procedure

The OptiMax vessel was charged with 900 ml of solvent at 25 �C
at the start of each experiment. A predetermined quantity of solid
was then added, and heated to 40–50 �C to dissolve. The solution
was then cooled to 25 �C over 20 min to saturate. Once the temper-
ature had reached the setpoint value, a predetermined mass of
solid powder was added to the saturated solution and allowed to
equilibrate for 60 min. Before the addition of the powder, a sample
of the original material (starting material) was initially analysed
with the offline Morphologi instrument for size and shape
information.

After the equilibration period (covering a period T1), the peri-
staltic pump and wet mill were started simultaneously. The speed
of the pump was maintained at 50 rpm throughout the experi-
ments while that of the wet mill was initially set to 6000 rpm
(for a duration T2) after which it was increased in stages. At the
next stage (with duration T3) of the process, the speed of the
wet mill was increased to 10,000 rpm, and subsequently to
14,000 rpm (for a duration T4) and finally to 18,000 rpm (for a
duration T5). The temperature of the mill outlet was regulated
manually by adjusting the heater chiller setpoint in order to main-
tain it at 25 �C and prevent dissolution. The time intervals T1 to T5

varied from 30 to 90 min for each material.
At the end of the time interval T5, the suspension was filtered

and washed in a Buchner funnel. The same solvents which were
used in the experiments for benzoic acid and metformin
hydrochloride were used for washing each material at the end of
their respective experiments, while paracetamol was washed with
chilled water. Each material had a low solubility in its respective
wash solvent. Each of the cakes obtained at the end of each wet
milling process was dried overnight in a vacuum oven. Samples
of the milled product obtained at the end of each wet milling pro-
cess were analysed for size and shape information using the offline
Morphologi instrument.

2.3.1. Benzoic acid
Benzoic acid particles were prepared by antisolvent crystallisa-

tion (after an initial dissolution of benzoic acid from Sigma-
Aldrich) using a mixture of 70–30% ethanol - water mixture as sol-
vent, and 20–80% ethanol - water mixture as antisolvent. A prede-
termined mass of antisolvent was added at a predetermined rate in
order to obtain long needle shaped crystals. The particles were fil-
tered and dried before being suspended in water for the milling
experiment. The particles were suspended in water (saturated with
benzoic acid) due to the low solubility of benzoic acid in water.
However, due to poor wettability of benzoic acid in water, the sur-
factant Tween 20 was used at a concentration of 2 ml/L. The solid
loading was 1.6% w/w.
Please cite this article in press as: O.S. Agimelen et al., Multi-sensor inline me
milling of crystal slurries, Advanced Powder Technology (2018), https://doi.org
2.3.2. Paracetamol
Paracetamol from Sigma-Aldrich was dissolved in isoamyl alco-

hol after which prism like particles were obtained by cooling crys-
tallisation. The particles obtained from the cooling crystallisation
were then suspended in a saturated solution of paracetamol in
2-propanol for the wet milling experiment. The solid loading
was 4.2% w/w. Although the solubility of paracetamol in 2-
propanol is relatively high, the solvent was chosen to avoid
agglomeration.

2.3.3. Metformin hydrochloride
Metformin from Molekula was used directly as the particles

were already rod-like. The particles were then suspended in a
saturated solution of metformin in 2-propanol (in which met-
formin has a low solubility and good dispersion) for the wet
milling process. The solid loading was 3.5% w/w. The wet milling
process for metformin was stopped at the stage T4 (with the mill
speed of 14,000 rpm) as the particles were quickly broken in this
case.

2.4. Data analysis

As mentioned above, the starting material and the milled pro-
duct for each material were analysed for size and shape informa-
tion using the offline Morphologi G3 instrument. The CLD data
acquired using the inline FBRM sensor (using the macro mode with
no weighting) were analysed using a previously developed inver-
sion algorithm [18,22] which estimates corresponding particle size
distribution and aspect ratio (assumed to be same for all particles).
Similarly, the images captured using the inline PVM sensor were
analysed using a previously developed [19,23] image processing
algorithm to obtain projections for particles captured in images
and to provide the corresponding particle length and aspect ratio
for each particle deemed to be in focus. Therefore, detailed size
and shape distributions can be obtained, similar to those from off-
line measurements.

The number of particles produced during the wet milling pro-
cess can be determined from an estimated volume based PSD for
the particles in the suspension and solid loading (which is constant
during wet milling under saturated conditions). To estimate the
number of particles, the particle length L is discretised and classi-
fied into N bins with the characteristic length Li ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
LiLiþ1

p
of bin i

representing the length of particles in bin i, where Li and Liþ1 are
the bin boundaries of bin i. The number of particles Ni in bin i is
given as

Ni ¼
~miM0

qv i
: ð1Þ

where ~mi is the mass fraction of the particles in bin i;M0 is the mass
of the initially suspended particles (which is constant as there is no
growth or dissolution), q is the density of particles and v i is the vol-
ume of the particles in bin i. Approximating the shape of all parti-
cles in each bin with an ellipsoid of semi-major axis length

ai ¼ Li=2 and two equal semi-minor axis length bi ¼ riai, where ri
is the mean aspect ratio1 of all the particles in bin i, gives the volume
of the particles in bin i as v i ¼ pr2i L3i =6. Since all particles have the
same density, the mass fraction of the particles in bin i can be
replaced by their volume fraction ~v i. Then the number of particles
in bin i becomes

Ni ¼ 6~v iM0

qpr2i L3i
: ð2Þ
asurements of crystal size and shape distributions during high shear wet
/10.1016/j.apt.2018.09.003
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When the volume based PSD is estimated from CLD inversion
[18], the corresponding number of particles N CLD is obtained by
summing over all bins as

N CLD ¼
XN
i¼1

Ni: ð3Þ

As the slurry is initially allowed to equilibrate during the stage
T1 of each of the wet milling processes, the number of particles
estimated at the stage T1 will be taken as the base number of par-
ticles N 0

CLD. Then the number of particles relative to the base num-

ber of particles bNCLD is obtained from bNCLD ¼ N CLD=N
0
CLD.

In the case of image analysis, the mean number of objects per
frame N IMG is used as a measure of the number of particles. It is
estimated by counting all objects which were detected and con-
tained wholly within the image frames. This number of objects is
then divided by the total number of frames to obtain N IMG. Similar
to the case of CLD, the number of particles estimated from images
at T1 will be taken as the base N 0

IMG. At the subsequent stages, the
number of particles estimated from images relative to the base

number of particles bNIMG will be obtained from bNIMG ¼ N IMG=N
0
IMG.

3. Results and discussions

The three particle analysis techniques employed in this work
consistently showed particle breakage during wet milling pro-
gressing from the lowest to the highest mill rotational speed. How-
ever, the different techniques showed varying sensitivities as
process conditions and particle size and shape distributions chan-
ged. Below we present and discuss results for benzoic acid in detail
and analyse respective limitations of the different techniques using
results from all three systems. A complete set of results for parac-
etamol and metformin are available in the supplementary
information.

3.1. Offline analysis

The two-dimensional volume based probability density func-
tion (PDF) of particle length and aspect ratio estimated using off-
line imaging (Morphologi G3) for both the starting material and
the final milled product for benzoic acid are shown in Fig. 2(a)
and (b), respectively2. The data clearly show particle breakage as
the broad peak between particle lengths 100 and 1000 microns
and aspect ratios from 0.4 to 1 moves towards smaller lengths and
higher aspect ratios between Fig. 2(a) and (b). This is indicative of
breakage of large elongated particles to much shorter, more isomet-
ric ones. In Fig. 2(c) and (d) we show one-dimensional projections of
two-dimensional PDFs above, in terms of volume based particle
length distributions and aspect ratio distribution for the starting
material and the final milled product. Similar results were also
obtained for paracetamol and metformin as shown in Figs. 11 and
13 of the supplementary information.

3.2. Analysis of inline CLD data

The total CLD counts at the different time intervals T1 to T5 dur-
ing the wet milling of benzoic acid are shown by the solid line in
Fig. 3(a). The increase in total chord counts over the wet milling
stages T1 to T5 seen in Fig. 3(a) clearly indicates breakage of parti-
2 The raw estimates of particle lengths and widths from the Morphologi instrument
was extracted and analysed. In the volume based analysis, the particles were treated
as ellipsoids of major axes lengths equal to the originally estimated particle lengths.
The two minor axes were set equal to the originally estimated particle widths. This
was to make the analysis consistent with those carried out on the inline PVM images
and the particle representation in the CLD analysis.
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cles during the process as the conditions were such that there was
no nucleation or growth of particles. This breakage is also reflected

in the increase in the relative number of particles bNCLD as shown by
the symbols in Fig. 3(a).

The mean CLD captured in 5 min time intervals (T1 to T5 shown
by the vertical bars in Fig. 3(a)) within the time intervals T1 to T5

are shown by the symbols in Fig. 3(b). Breakage of particles leads
to an increase in the counts for smaller chord lengths of these CLDs
over the time intervals T1 to T5 as the CLD acquisition time was
fixed throughout the process.

The solid lines (with the colours corresponding to the symbols)
in Fig. 3(b) are the fitted CLDs obtained by solving the associated
inverse problem. This involves searching for a PSD at different
aspect ratios r (all particles are assumed to have the same mean
aspect ratio) whose corresponding CLD gives the best fit to the
measured CLD [18]. In the case of Fig. 3(b), these best fits were
obtained at r ¼ 0:6 (T1), r ¼ 0:5 (T2), r ¼ 0:5 (T3), r ¼ 0:5 (T4) and
r ¼ 0:8 (T5) as indicated in Fig. 3(b).

The PSDs estimated from the CLDs in Fig. 3(b) (at the best fit
values of r) are shown in Fig. 3(c). The estimated PSDs (Fig. 3(c))
both show breakage of particles moving from T1 to T5. That is,
the peaks of the distributions shift to the left and both the right
and left tails of the distributions shift to the left on moving from
T1 to T5. Similar results were obtained from the analysis of CLD
data for paracetamol and metformin. The results are shown in Sec-
tion 4 of the supplementary information.

3.3. Analysis of inline PVM images

Breakage of benzoic acid particles during wet milling is evident
from inspecting inline PVM images. However, image analysis pro-
vides quantitative estimates of how particle size and shape distri-
butions vary in response to changing mill rotational speed. This can
be clearly seen in the two-dimensional probability density function
of particle length and aspect ratio (Fig. 4(a)) obtained from the
analysis of PVM images (moving from T1 to T5). We note that the
particle length distribution obtained from PVM images has lower
and upper cut-offs due to limitations of image size, resolution
and subsequent image processing. At the lower end, the cut-off is
at a length of about 25 lm. This is because of the resolution of
PVM images and a choice of a minimum pixel area required (here
we used K576 lm2, corresponding to length K24 lm) by an
image processing algorithm to distinguish between relevant
objects and background image noise. Hence all particles with smal-
ler lengths were rejected by the image processing algorithm. Also,
objects with lengths J500 lm tend to be undercounted by the
image processing algorithm. This is because larger objects have a
higher chance of touching the image frame so that most of them
are rejected. Hence, the particle length estimates from PVM images
are most reliable within the range from about 25 to about 500 lm
[19].

3.4. Limitations of particle sizing techniques

Wet milling of particle slurries from three systems used in this
work presented different challenges pertaining to particle sizing
techniques and corresponding data analysis as discussed below.

3.4.1. Limitations of offline analysis
One of key limitations of particle sizing using offline imaging,

such as the Morphologi G3 used in this work, is the change of state
of the particles between the slurry and the dry powder used for
analysis. In some cases, particles that were initially agglomerated
before suspension could become de-agglomerated upon suspen-
sion and agitation. This is particularly obvious in the case of the
asurements of crystal size and shape distributions during high shear wet
/10.1016/j.apt.2018.09.003
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Fig. 2. 2D volume based probability density function (PDF) of particle length and aspect ratio for the starting material (a) and the final milled product (b) for benzoic acid
from the offline Morphologi instrument. Corresponding 1D volume based particle length distributions (c) and 1D volume based aspect ratio distributions (d) of the starting
material and the final milled product for benzoic acid.

Fig. 3. The total chord length counts for the benzoic acid sample during the wet milling stages covering the time intervals T1 to T5 are shown by the solid line in (a), while the
symbols show the relative number of particles bNCLD for the same sample. The mean chord length distributions (CLDs) acquired in the 5 min intervals T1 to T5 (shown by the
vertical bars in (a)) within the stages T1 to T5 are shown by the symbols in (b). The solid lines in (b) (with colours corresponding to the symbols) are the estimated CLDs at the
aspect ratios r indicated in the Fig. The estimated volume based PSDs from the CLDs shown in (b) at the aspect ratios indicated in (b) are shown in (c). (For interpretation of
the references to colour in this figure legend, the reader is referred to the web version of this article.)
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paracetamol starting material. The sample images (Fig. 3 of the
supplementary information) from the offline instrument suggests
the presence of agglomerates up to 1000 lm. Whereas, these large
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agglomerates seem to be missing in suspension as suggested by the
sample image from the PVM sensor at T1 in Fig. 8(T1) of the supple-
mentary information. The presence of the large agglomerates in
asurements of crystal size and shape distributions during high shear wet
/10.1016/j.apt.2018.09.003
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Fig. 4. 2D volume based probability density functions (PDFs) of particle length and aspect ratio estimated from images captured with inline PVM instrument during wet
milling stages T1 (a) and T5 (b) for benzoic acid. Corresponding 1D volume based particle length distributions (c) and 1D volume based aspect ratio distributions (d) during
wet milling stages T1 and T5 for benzoic acid.
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the starting material of paracetamol leads to the peak close to
1000 lm in the estimated volume based PSD for paracetamol
obtained with the Morphologi instrument. This is seen in Fig. 5
(b). Hence the peaks of the estimated volume based PSDs from
CLD and PVM images at T1 are shifted to the left of the correspond-
ing estimate of the starting material of paracetamol obtained from
the offline Morphologi instrument, as seen in Fig. 5(b).

In some other cases, particles that were initially separated could
become agglomerated upon filtration and drying for offline analy-
sis. This is obvious in the case of the milled product of benzoic acid.
The sample PVM image (Fig. 7(T5) of the supplementary informa-
tion) of the benzoic acid sample suggests that the particles were
mostly separated at T5 while in suspension. However, a significant
amount of them had become agglomerated upon filtering and dry-
ing before offline analysis with the Morphologi instrument, as seen
in Fig. 2 of the supplementary information.

3.4.2. Limitations of CLD analysis
The idealised CLD model [21] used in this work assumes that

all particles lie on the focal plane of the laser spot of the FBRM
instrument, and that the laser spot makes a straight chord on
the particles. However, as the length dimensions of the particles
become comparable to the diameter of the circular laser beam
(the FBRM G400 used in this work has a diameter of 5:3 mm),
the curvature of the chord becomes more pronounced and the
relationship between the particle size and shape and the corre-
sponding CLD becomes less accurate as the particle length
increases.

This situation particularly arises in the case of the starting
material of metformin. The sample image of the starting material
of metformin in Fig. 5 of the supplementary information suggests
the presence of particles of lengths � 3000 lm. These lengths
dimensions are not accurately represented in the CLD data, so that
the peak of the volume based PSD estimated from CLD analysis at
T1 is shifted to the left of the corresponding estimate using the off-
line Morphologi instrument. This is seen in Fig. 5(c). There is also
the possibility that some of these long rod-like particles were bro-
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ken upon suspension and agitation, so that their contribution to
the CLD data is reduced.

Another issue with CLD analysis is the situation where objects
are transparent to the laser beam. There was a significant amount
of bubbles produced during the wet milling of the benzoic acid
sample, as seen in the PVM image in Fig. 7 of the supplementary
information. Even though these bubbles are not crystalline parti-
cles, they contribute to the chord count of the FBRM sensor.
Because the bubbles are transparent to the laser beam, they lead
to chord splitting [16,24] at their boundaries. This could lead to
an artificially high count of shorter chords, and hence to an over
estimation of fines in the estimated volume based PSD from CLD
analysis.

The CLD modality is inherently biased towards larger particles
[18]. This leads to a situation whereby when there is a significant
proportion of larger particles in a suspension, the aspect ratio pre-
dicted from CLD analysis becomes biased towards that of the large
particles. This is clearly demonstrated in the case of metformin.
Analysis of CLD data for metformin suggests an aspect ratio of
r ¼ 0:3 at both T1 and T4 as indicated in Fig. 16 of the supplemen-
tary information. The peak of the volume based 1D aspect ratio dis-
tribution (Fig. 13 of supplementary information) from Morphologi
for metformin occurs at about 0.45 for the starting material. How-
ever, the corresponding estimate for the milled product shows a
shoulder covering around 0.55–0.85. When this data is represented
on number basis (Fig. 14 of supplementary information), the peaks
of the estimated 1D aspect ratio distribution from Morphologi for
metformin almost coincide at 0.75.

This situation occurs because the metformin sample contains a
significant amount of fines as seen in Figs. 5 and 6 of the supple-
mentary information. As the CLD modality is biased towards larger
particles, which are more elongated in this case, the estimated
aspect ratio of r ¼ 0:3 at T1 is closer to the position of the peak
of the 1D aspect ratio distribution from the Morphologi on volume
basis rather than on number basis. This is because the smaller par-
ticles, which dominate the number based distribution, are more
rounded than the larger particles.
asurements of crystal size and shape distributions during high shear wet
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Fig. 5. The volume based PSDs (a)–(c) estimated for the starting materials using data from the offline Morphologi instrument, CLD analysis at T1, PVM image analysis at T1 for
each of the materials indicated. Similar estimates of the volume based PSDs at T3; T4; T5; T5, and for the milled products for each of the materials are shown in (d)–(e).
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3.4.3. Limitations of inline image analysis
Analysis of images captured with inline instruments such as the

PVM comes with a number of challenges. One issue is objects not
being in the focal plane of the camera [19]. Even though the image
processing algorithm used in this work has a focus threshold,
which allows objects captured out of focus to be rejected, some
of these objects still get accepted when they just meet the criteria
used for acceptance. Similarly, some objects are only captured par-
tially in focus, so that only a part of the object’s boundary will be
detected. The size and shape of these objects captured out of focus
or partially in focus are not well represented in the data. This situ-
ation contributes to the aspect ratios estimated for the three sam-
ples at both T1 and T5 extending up to 1, as seen in Fig. 4(a) for
benzoic acid, and in Figs. 11–14 of the supplementary information
for paracetamol and metformin respectively. Another factor con-
tributing to the aspect ratio distribution extending to 1 at both
T1 and T5 is that the suspensions contained a significant amount
of fines as seen in the PVM images in Figs. 7–9 of the supplemen-
tary information. These fines are mostly more rounded than the
larger more elongated particles.

Another limitation of image analysis is the case of objects
touching the edge of the image frame. These objects are rejected
from the analysis. This leads to a situation where the estimated
PSD from image analysis is biased towards smaller particles when
there is a significant amount of large particles touching the image
frame. This effect is more pronounced in the case of metformin at
T1, where the estimated volume based PSD from PVM images is
shifted to the left of the corresponding estimate of the starting
material of metformin obtained with the offline Morphologi instru-
ment, as seen in Fig. 5(c). However, as mentioned earlier, it could
also be that some of the long (with lengths � 3000 lm) rod-like
particles in the starting material of metformin may have broken
to smaller particles upon suspension and agitation.

All images are affected by a resolution limit of the camera used,
whereby small objects that are too close to the resolution limit are
no longer distinguishable from the background noise of the image.
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As these objects are removed from the analysis, the fines could
become under estimated if there is a significant amount of small
particles in suspension. This is the reason all the particle sizes esti-
mated from PVM images in this work have a cut-off close to 25 lm
as seen in Figs. 4 and 5, and similarly in Figs. 17–21 of the supple-
mentary information. This effect is even more pronounced in the
case of metformin where it was virtually impossible to see objects
in the PVM images at T4 (Fig. 9(T4) of the supplementary informa-
tion). Hence, analysis of images captured at T4 for metformin was
not done in this work. That is why the volume based PSD for met-
formin in Fig. 5(f) was estimated at T3. This effect is also seen in the

estimated relative mean number of objects per frame bNIMG. As the
wet milling progresses, the number of objects detectable in images
reduces due to the reduction in particle sizes, hence the value of
bNIMG shows a small decrease after an initial increase. This is seen
in the case of metformin shown in Fig. 22 of the supplementary
information.

Objects which overlap each other also pose a limitation to anal-
ysis of images. As the suspension density increases, the number of
objects overlapping each other in the images increase. These over-
lapping objects give misleading estimates of size and shape. Some
of these overlapping objects can be seen in the PVM images in
Figs. 7–9 of the supplementary information. This issue of overlap-
ping objects puts a limit on the suspension density in which anal-
ysis of inline images is applicable.
4. Effect of mill rotational speed on particle size

The results shown in the previous sections show an overall
decrease in particle size as a result of the wet milling. This decrease
is reflected in all the PSDs estimated from CLD and both inline and
offline images. The decrease in particle size and corresponding
increase in particle number is also reflected in the estimated mean

number of objects per frame bNIMG (from inline images) as a func-
asurements of crystal size and shape distributions during high shear wet
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Fig. 6. The relative number of objects per frame bNIMG estimated from the images
captured with the inline PVM instrument over time covering the period T1 to T5 are
shown by the symbols.
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tion of rotation speed. This is shown in Fig. 6. This is similar to the

situation observed in bNCLD in Fig. 3(a).
In order to accurately capture the increasing number of smaller

particles as rotational speed increases, we counted all objects in
images rather than just those in focus, as the number of objects
detected in focus reduce with decreasing size near the resolution
limit (which is around 25 lm here). Taking only objects in focus
would lead to a reduction of the mean number of objects per frame,
although this may eventually happen if particles become too small
to be resolved by the camera.

In Fig. 7 we can see the dependence of the volume weighted
mean particle length D43 as a function of wet mill rotational speed,
estimated from both CLD data and inline images, together with val-
ues from offline analysis estimated before and after milling. There
is a good agreement between results from the two inline methods
in all three cases. There is also a good agreement between inline
and offline measurements.
Fig. 7. Estimated D43 values of particle length for the three materials using the three mod
just for comparison as the particles were not in suspension during the measurement.
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In the case of metformin, the estimated D43 value of the starting
material obtained from Morphologi is more than double the corre-
sponding values from inline CLD and PVM. This is seen in Fig. 7(c).
This is because of the long rod-like particles of order 3000 lm in
the starting material of metformin. These particles were out of
the range of measurements of FBRM and PVM as discussed earlier.

A similar situation is seen with paracetamol. The agglomerates
present in the starting material of paracetamol (Fig. 3 of supple-
mentary information) causes the estimated D43 value of the start-
ing material to be about double of those of the estimates from
inline CLD and PVM images at 0 rpm. This is seen in Fig. 7(b). Fur-
thermore, the estimated D43 value of the milled product of parac-
etamol is about half the values estimated from inline CLD and
PVM images. This could have been due to generation of fines dur-
ing filtration and drying of the milled paracetamol.

Finally, we can also see that the mean particle size dependence
on wet mill rotational speed between 6000 and 14,000 rpm is rel-
atively gradual for both benzoic acid and paracetamol, while for
metformin there is a very large decrease in the mean size after
the lowest rotational speed (6000 rpm) is applied, followed by rel-
atively little change afterwards. This indicates that material prop-
erties of crystals and solvents used are likely to play a significant
role in performance of high shear wet mills in pharmaceutical
manufacturing.
5. Conclusions

We have employed our recently developed computational tools
for estimating particle size and shape distributions from inline CLD
and imaging data to study changes in particle size, shape and num-
ber in slurries during wet milling with variation in milling speed.
We have also compared the estimates from the inline instruments
to corresponding estimates from offline analysis. The results show
that these tools are suitable for monitoring changes in particle size
and shape distributions and number of particles in slurries. The
ability to capture changes in the quantitative particle attributes
alities as indicated. The estimates from the offline Morphologi instrument are added

asurements of crystal size and shape distributions during high shear wet
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show the promise these tools hold for aiding modelling and control
of crystallisation processes. The quantitative PSD and shape infor-
mation obtained inline and in real time can be used to tune kinetic
parameters in population balance models for crystallisation
processes, accounting for time dependence of kinetic process
parameters.

However, some inconsistencies were observed between esti-
mates from inline and offline measurements, and possible reasons
for the discrepancies were discussed. Our results also reveal some
of the challenges of estimating PSD from data captured with inline
instruments. Inline imaging is limited to particles of certain mini-
mum sizes due to camera resolution limits and out of focus rejec-
tion requirements for image processing algorithms. In addition, the
PSD estimated by inline imaging becomes less representative as
the sizes of the particles approach the size of the image frame. Sim-
ilarly, the measured chord length from the FBRM sensor becomes
less accurate as the length of needle-like particles approach the
diameter of the circular trajectory of the FBRM laser spot. Also,
CLD data could be affected by chords measured from bubbles pre-
sent in the process. The CLD data could also become unrepresenta-
tive when there is significant chord splitting at the edges of the
particles.

Approaches for combining both CLD and imaging data in a
multi-objective optimisation approach are being explored in our
further work in order to improve the robustness and accuracy of
estimated PSD from inline CLD and imaging data.
Data management

All images captured with the PVM sensor as well as the data
from the offline Morphologi instrument and CLD data from the
FBRM sensor have been deposited in the publicly accessible
repository.
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